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Abstract. We detail the full subalgebra lattice of U(16), the algebra encountered in the 
bosonic quantisation of asymmetric shapes described by ip = O+, 1-, 2+ and 3- multipoles. 
All subalgebras that can be generated from tensors built from O+, 1-, 2+ and 3- bosons 
and that have the proper O(3) content are identified from elementary representation theory. 
Of the 165 dynamical symmetry limits, we present seven dynanical symmetry limits and 
suggest that they reflect the relevant symmetries of this model. 

1. Introduction 

The U(16) algebra arises from the bosonic quantisation of a classical shape in terms 
of iWp = O+, 1-,2+ and 3- multipoles. It was initially introduced to describe features 
of nuclei that are reflection asymmetric in the ground state (Engel and Iachello 1985) 
and has been discussed more recently in a bag-like description of baryonic spectra 
(Iachello 1988). To date, the application of U(16) Hamiltonians has been limited to 
the phenomenological description of low-energy nuclear collective excitations. In the 
past, such interacting boson models (IBM) have been quite successful, largely due to 
the algebraic structure and dynamical symmetry properties of these models (Iachello 
and Arima 1987). However, attention has been primarily focused on positive parity 
collective excitations generated by s and d bosons (AP = 0+,2+, respectively). This 
was due, in part, to the inability to describe electric dipole transition probabilities in 
nuclei using octupole bosons (iP = 3-; f bosons) coupled to the positive parity states 
generated by s and d bosons (the sdf IBM). Recently there has been a great deal of 
experimental activity measuring electromagnetic electric dipole transition properties 
of positive and negative parity states in nuclei where there is suspected ground-state 
octupole deformation. In order to attempt a collective model description of the electric 
dipole transition properties and study the implications of octupole deformation in the 
IBM framework, an interacting boson model containing s, p, d and f bosons has been 
introduced (the spdf IBM) (Han et al 1985, Engel and Iachello 1987). The one- and 
two-body interactions constructed from s, p, d and f bosons close under the U(16) Lie 
algebra. Phenomenological Hamiltonians constructed from U( 16) have been applied to 
the neutron rich rare-earth nuclei (Kusnezov and Iachello 1988) and the light actinide 
nuclei (Engel and Iachello 1987, Otsuka and Sugita 1988) with some success. It is 
our purpose here to classify completely the limiting symmetries of this model. The sdf 
IBM will be seen to be only a small contribution to the large number of dynamical 
symmetries encountered in the spdf IBM, which can then be understood to account for 
the success of the latter model. 
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The U(16) algebra and subalgebras are also of interest in the study of bose-fermi 
symmetries in odd-odd nuclei. Particularly, U(16) arises as the symmetry group when 
two quasiparticles corresponding to neutron and proton degrees of freedom are given 
j = i configurations (Hubsch and Paar 1984). Upon constructing generators that 
mix the protons and neutrons, the U(16) algebra is obtained as a maximal symmetry. 
The subalgebra U(4) 8 U(4) then emerges as a natural decomposition of U(16) into 
separate proton and neutron U(4) subalgebras, one for each j = i configuration. The 
similarity in the algebraic structure is related to the fact that bosons with A = 0,1,2 
and 3 can be expressed as coupled fermions, each with j = i. In this respect, the 
algebraic lattice of U(16) that is detailed in this article is relevant to such bose-fermi 
models. 

In such a large model, many subalgebras cannot be identified by their type, such as 
SU(3). For this reason, we adopt the notation of including a subscript indicating the 
types of bosons that are used to generate the algebra. For our purposes, this label (or 
the lack of a label) is a sufficiently unique classification. We note that the subalgebra 
structure of Upf(lO) (Nadjakov and Mikhailov 1987), and the two decompositions 
Uspdf(16) 3 SU(4) 8 SU(4) Sp(4) 8 Sp(4) 3 OSpdf(4) 3 OP,,(3) (Engel and Iachello 
1987) and uspdf(16) 3 SUpdf(15) 3 supdf(3) 3 OPdf(3) (Castaiios et a1 1986) have 
been introduced previously, although we will see that in the last limit the dynamical 
symmetry was not completely specified. The actual construction of the generators and 
Casimir invariants will be discussed elsewhere (Kusnezov 1989). The SU(4) e SU(4) I> 
SU(4) subalgebra has also been discussed in relation to odd-odd nuclei when the odd 
proton and odd neutron quasiparticles are restricted to j = 3 configurations (Hubsch 
and Paar 1985, 1987, Hubsch et a1 1985). As we shall see below, however, aside from 
this obvious SU(4) subalgebra, there is in fact another distinct embedding of SU(4) 
with completely different properties. 

Clearly not all U(16) dynamical symmetry limits are relevant. Although there are 75 
distinct subalgebras producing 165 dynamical symmetry limits, many of the dynamical 
symmetry limits correspond to decoupled excitations and identical subalgebras appear 
in many different symmetry breaking schemes. It is important to consider whether a few 
dynamical symmetry limits can be extracted that perhaps contain the essential dynamics 
of the model. A criterion by which such limits can be chosen is based on the inability 
of the sdf IBM to describe collective nuclear excitations. Thus, isolate the dynamical 
symmetry limits of Uspdf(16) in which the p and f boson spaces never decouple as the 
USpdf(16) symmetry is broken down to OPdf(3). Further, we can require some algebraic 
coupling between positive and negative parity bosons at a level higher than Opdf(3). 
In this way we are led to a few limiting symmetries that are perhaps most physically 
relevant. These symmetry limits are referred to as pdf dynamical symmetries. Not 
all physically relevant symmetries fall into this category, since vibrational excitations 
are described by the decoupling of each boson into its separate harmonic oscillator 
algebra. However, in the study of octupole deformations, a strong interplay between 
the positive and negative parity bosons is needed, and is the basis of our selection. 
Further, when the physics indicates some decoupling, then one no longer requires the 
full U(16) algebra, and a smaller model is sufficient. 

2. Maximal subalgebras of Uspdf (1 6) 

The classification of the different maximal subalgebras is simplified by the techniques 
of Dynkin (Dynkin 1957, Cahn 1984). According to Dynkin, maximal subalgebras 
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fall into two categories: regular subalgebras and non-regular (or S-) subalgebras. 
The difference between a regular and an S-subalgebra of some algebra G lies in the 
embedding of the root spaces of these subalgebras into the root space of the algebra G. 
Details can be found in standard references (Dynkin 1957, Gruber and Samuel 1968, 
Cahn 1984), and we shall not repeat them here. In terms of the interacting boson 
model, the difference between these subalgebras will now be discussed. 

Table 1. Maximal simple and non-simple regular and S- subalgebras of the Uspdf(16) 
interacting boson model which contain the physical angular momentum. 

Model Dynamical 
symmetry 

Type of Type of 
subalgebra embedding 

S-subalgebra 
simple 
spinor, simple 

non-simple 
non-simple 

Regular 
subalgebra 

non-simple 
non-simple 
non-simple 
non-simple 
non-simple 
non-simple 

In determining the number of ways to break the U(16) symmetry of this model, 
we will require the condition that the one-boson representation of U(16) contains the 
O(3) representations J = 0,1,2,3, corresponding to the four types of bosons. Then the 
number of maximal regular and S-subalgebras that obey this condition are precisely 
the number of ways to break the U(16) symmetry. Maximal regular subalgebras of a 
unitary algebra U(N) can be found from extended Dynkin diagrams (Dynkin 1957). 
Using the above condition on the angular momentum content of the subalgebras, it is 
not hard to see that the general form of the regular subalgebras of U(16) are U(16) 3 

U(16-n) 6 U(n), where it = ‘&r,lc(o 23;(21, + 1). Here I ,  is summed over any number 
of the different boson spins. Regular subalgebras must be of this form since the 
one-boson 16-dimensional representation [ 13 of U( 16), breaks into the representations 
([l] 6 [O]) 6 ([O] 0 [l]) of U(16-n) 6 U(n), with the dimensions (16 - n) and n, 
respectively. This sum of representations requires that the angular momentum be 
partitioned between U(n) and U(16-n). These are precisely the subalgebras formed by 
the partitioning of the four types of bosons into two groups. In this way the maximal 
simple and non-simple regular subalgebras of U(16) are easily identified, and given in 
table 1. 

The general form of all non-simple maximal S-subalgebras has been tabulated by 
Dynkin (Dynkin 1957). For U(16), they are of the form U(16)1 U(n)@ U(m), where 
n x m = 16. This results in the two choices (n,m) = (4,4) and (2,8). Both of these 
non-simple maximal subalgebras can be broken to 0,,,(3) and hence have the proper 
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Table 2. Maximal subalgebras of unitary algebras that appear in the decomposition of 
U(16). These are the subalgebras formed by various groupings of the s, p, d and f bosons. 
Some of the shorter subalgebra chains are drawn to completion. 



The U (  16)  algebraic lattice 4275 

Table 2. (continued) 

angular momentum content. The maximal simple S-subalgebras of U(16) can be found 
by identifying all algebras with lower rank that (i) have a 16-dimensional representation 
and no bilinear form, and (ii) are not among the few exceptions to this rule. This 
leads to two maximal simple S-subalgebras that can be embedded in [l] of U(16). 
They are the 16-dimensional symmetric representation of 0(16), (lOOOOOOO), and the 
16-dimensional spinor representation of O( lo), given by (00001). The maximal simple 
and non-simple regular and S-subalgebras of U(16) is given in table 1, indicating that 
there are eleven symmetry breaking schemes. 

3. Classification of subalgebras 

In order to unfold the full algebraic structure of this model, we must repeat this 
procedure for all subalgebras until we reach the physical angular momentum algebra 
generated by OPdf(3). The complete subalgebra lattice is too large to display in 
its entirety, and since most of it is not illuminating, we will instead list all maximal 
subalgebras and their maximal subalgebras and so forth. The full lattice can then easily 
be pieced together from this information. In tables 2 and 3 the maximal subalgebras 
of unitary and orthogonal algebras that appear in the decomposition of U(16) are 
tabulated. The cases where the symmetry can be broken to Opdf(3) in only a few steps 
are indicated in these tables. Several subalgebra decompositions that do not appear in 
tables 2 and 3 are discussed below and appear in table 4. 

In table 4, there are two distinct SU(4) subalgebras of SU(4) @ SU(4), which are 
referred to as supdf(4) and OSpdf(6). Both these embeddings of SU(4) carry the same 
Dynkin index j = 1. Since the SU(4) @ SU(4) subalgebra corresponds to the embedding 
of the (100) @(loo) representation into [l] of Uspdf(16), these algebras can be combined 
to form the su,,df(4) - OSpdf(6) representations (200) @ (010). However, there is also 
an embedding of the 15-dimensional and one-dimensional representations (101) @ (000) 
of supdf(4). The essential difference between these algebras is that the latter does not 
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Table 3. Maximal subalgebras of orthogonal algebras that appear in the decomposition of 
U(16). Some of the simpler subalgebra chains are drawn to completim. 
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conserve the number of positive parity bosons, allowing mixing of positive and negative 
parity bosons. This is because OSpdf(6) appears as a subalgebra of Usd(6) @ Upf(lO), 
which separately conserves the number of positive and negative parity bosons. Similarly, 
there are two distinct SU(3) embeddings in the SU(3) 8 SU(3) subalgebra of Usp((9), 
denoted supd(3) and su,,d(3). As with the SU(4) algebras, both SU(3) embeddings 
carry the same Dynkin index j = 1. Further, it was commented in Castaiios et a1 (1986) 
that the 15-dimensional (2,l) representation of supdf(3) is a subalgebra of SUPdf(15). 
We remark that supdf(3) is actually a maximal subalgebra of SUpdf(6), which In turn 
is maximal in supdf(15). Thus, (2,1) can be embedded in the 15-dimensional (01000) 
representation of SUpdf(6), which can then be embedded in [ I ]  of SUpdf(15). This leads 

The difficulties encountered in the description of nuclear collective octupole ex- 
citations in the framework of the Usdf(13) algebra can be understood from tables 2 
and 3. Aside from the Sp(6) 0 SU(2) limit of Osdf(12) (which does not contain the 
boson angular momentum operators as generators), the subalgebras of U,,,( 13) mostly 
decouple the bosons into separate subalgebras, leading to decoupled excitations. Thus 
octupoie deformed nuclei (reflection asymmetric shapes) do not arise naturally in any 
dynamical symmetry limit. 

to the chain usp,jf(16) 2 sup,f(15) 2 supdf(6) 3 supdf(3) 3 OPdf(3). 

4. pdf dynamical symmetry limits 

If we now consider the dynamical symmetries that do not decouple the p and f bosons 
and retain coupling to positive parity bosons at a level above Opdf(3), we find that 
there are seven dynamical symmetry limits with this property. They are the dynamical 
symmetry limits that contain the algebras upd[(5), Ospdf(6), upd[(4), susPdf(3), supdf(3), 
OSpdf(4) and OPf(5) @ Od(5). These special limits are shown in table 4. In order to 
preserve some of the notation of the sd IBM, we will number these limits (I), (IIa), (IIb), 
(IIIa), (IIIb), (IV) and (V). O(5) 0 O(5) has been taken as a limit rather than OPdf(5), 
since the latter appears in limits (I), (IIIa), (IIIb) and (IV), leading to one very large 
dynamical symmetry limit containing too many separate symmetries. 

We have excluded the limits such as the Updf(15) =) SU(3) Q SU(5), as well as the 
various symplectic limits involving SU(2) 0 Sp(6) and SU(2) 8 Sp(8). The reasoning 
is that the algebras in these limits couple only at the level of SU(2). They are also 
direct products of algebras, each of which contain angular momentum operators that 
are not physical boson angular momentum operators. When these limits are coupled 
at the SU(2) level, the angular momentum operator is finally recovered. So aside from 
the seven limits, all other dynamical symmetry limits either decouple p and f bosons, 
or only couple at the SU(2) level. 

In studying these seven limits, it is useful to recall that the linear and quadratic 
Casimir invariants of the unitary algebras of form U(C,, (21, + 1)) are related to A and A2, 
where A is the total number operator for the boson. The quadratic Casimir invariants 
of the orthogonal subalgebras of the type O(C,,(2li + 1)) are the pairing operators 
that can change the individual boson numbers by two, while conserving the overall 
boson number and parity. The Casimir invariants of the other algebras assume a more 
complex form (Kusnezov 1989), but nevertheless can be classified. 

Using the results in table 4, the quadratic Casimir operators can be divided into 
three classes, which for convenience we refer to as A, B and C. Class A is defined 
as the generators (and hence Casimir invariants) of the algebras that appear as 
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Table 4. The pdf dynamical symmetry limits of U,,dr(16). 

(IIIb) Uspdf (16) 
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subalgebras of Usd(6) @ Upf(lO) and necessarily separately conserve the number of 
negative and positive parity bosons. Hamiltonians constructed from the invariants 
of these subalgebras generate states of well defined parity, given by the expectation 
value of the number operator for negative parity bosons, (fi-). Nearly all algebras in 
table 4, including the entire sus,&) limit (IIa),  fall into this class. Naturally, parity 
doublets are not manifest in these limits since negative parity states can be moved 
with respect to positive parity states with the linear invariants of USd(6) and Upf(lO). 
The remaining algebras are the exceptions to this class. Class B are the algebras with 
Casimir operators that have good parity but do not commute with fi-, while class 
C are the algebras with Casimir operators that are of mixed parity and hence do 
not commute with fi-. There are only two algebras in table 4 of class C: SUpdf(6) 
and sUpd,(3). A method of constructing states of good parity for supdf(3) has been 
discussed In Castaiios et a2 1986, and can be used to classify the energy eigenstates of 
limit (IIb) with respect to parity. The eight class B algebras are 

SU(4) (33 SU(4) 

Ospdf (' 6, Opdf (1 5 )  Ospf (1 1) 
Sp(4) 0 Sp(4) 

O(10) Ospdf (4) supdf(4). 

Hamiltonians constructed from the invariants of these algebras have eigenstates of 
well defined parity. From this simple classification, it is clear that Hamiltonians that 
describe octupole deformation must include terms from class B or C. Only in this way 
can negative parity bosons be mixed into the ground-state wavefunction. 

5. Concluding remarks 

We have identified all subalgebras that occur in the decomposition of U(16). Using the 
tables, any dynamical symmetry limit of the Uspdf(16) model can be constructed. In 
the study of collective nuclear properties, this algebra is relevant to not only even-even 
nuclei, but also to odd-odd nuclei described by two quasiparticles each in j = 4 
configurations. The current success of f and p bosons in describing collective nuclear 
properties of both positive and negative parity states in even-ven nuclei suggests that 
the p boson should play an active role in the dynamics. Using this as a guide, we have 
identified seven dynamical symmetry limits in which there is no decoupling between 
the p and f bosons, and which retain coupling between positive and negative parity 
bosons at a level above Opdf(3). Further, we have classified the Casimir invariants of 
these limits with respect to parity. These pdf limits do not all have to reflect physical 
symmetries. However, if the presence of p and f bosons are of equal importance in the 
nuclear structure of low-lying negative parity states, some of these symmetries should 
be realised in some collective nuclei. These limits provide a starting point for dynamical 
symmetry studies involving the Uspdf (1 6) model. 
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